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3.1 INTRODUCTION 

This chapter reviews the mathematical tools and techniques required to 

solve differential equations. Study of these operations is a prerequisite for 

courses in aircraft flying qualities and linear control systems taught at the 

USAF Test Pilot School. Only analysis and solution techniques which have 

direct application for work at the School will be covered. 

Many systems of interest can be represented (mathematically modeled) by 

linear differential equations. For example, the pitching motion of an 

aircraft in flight displays motion similar to a mass-spring-damper system as 

shown in Figure 3.1. 
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FIGURE 3.1. AIRCRAFT PITCHING MOTION 

The static stability of the aircraft is similar to the spring, the moment of 

inertia about the y-axis is similar to the mass, and the airflow (aerodynamic 

forces) serves to damp the aircraft motion. Chapter 4 shows that stability 

derivatives can be used to represent the static stability and damping 

terms. These derivatives are C  and C In this chapter, M, K, and D will 

be used to represent mass, spring, and damper terms respectively. 
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The following terms will be used extensively: 

Differential Equation; An equation relating two or more variables in 
terms of derivatives. 

Independent Variables; Variables that are not dependent on other 
variables. 

Dependent Variables; Variables that are dependent on other variables. 
In a differential equation, the dependent variables are the variables on 
the left-hand side of the equation that have their derivatives taken with 
respect to another variable. The other variable, usually time in our 
study, is the independent variable. 

Solution. Any function without derivatives that satisfies a differential 
equation. 

Ordinary Differential Equation. A differential equation with only one 
independent variable. 

Partial Differential Equation. A differential equation with more than 
one independent variable. 

Order. An nfc derivative is a derivative of order n. A differential 
equation has the order of its highest derivative. 

Degree.   The exponent of a differential term.   The degree of 
differential equation is the exponent of its highest order derivative. 

Linear Differential Equation. A differential equation in which the 
dependent variable and all its derivatives are only first degree, and the 
coefficients are either constants or functions of the independent 
variable. 

Linear System. Any physical system that can be described which satisfies 
a differential equation of order n which contains n arbitrary constants. 

General Solution. Any function without derivatives which satisfies a 
differential equation of order n which contains n arbitrary constants. 

3.2 BASIC DIFFERENTIAL EQUATION SOLUTION 

Unfortunately, there is no general method to solve all types of 

differential equations. The solving of a differential equation involves 

finding a mathematical expression without derivatives which satisfies the 
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differential equation. It is usually much easier to determine whether or not 

a candidate solution to a differential equation is a solution than to 

determine a likely candidate. For example, given the linear first order 

differential equation 

3x*-x - 4 (3.1) 

and a possible candidate solution 

y = ^ x2 + 4x + C (3.2) 

it is easy to differentiate Equation 3.2 and substitute into Equation 3.1 to 

see if Equation 3.2 is a solution of Equation 3.1. The derivative of Equation 

3.2 is 

S- x + 4 <3-3> 
Substituting Equation 3.3 into Equation 3.1, 

(x + 4) - x = 4 (3.4) 

4 = 4 

Therefore, Equation 3.2 is a solution of Equation 3.1. 

It is interesting that, in general, solutions to linear differential 

equations are not linear functions. Note that Equation 3.2 is not an equation 

of the form 

y = mx + b (3.5) 

which represents a straight line. As shown in Equation 3.2, y is a function 

of x and x2. 
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There are several methods in use to solve differential equations. Thj 

methods to be discussed in this chapter are: 

1. Direct Integration 

2. Separation of Variables 

3. Exact Differential Integration 

4. Integrating Factor 

5. Special Procedures, to include Operator Techniques and Laplace 

Transforms. 

3.2.1 Direct Integration 

Since a differential equation contains derivatives, it is sometimes 

possible to obtain a solution by anti-differentiation or integration. This 

process removes the derivatives and provides arbitrary constants in the 

solution. For example, given 

rewriting 

integrating 

or, solving for y 

g£- x = 4 (3.1) 

dy - xdx = 4dx (3.6) 

Jdy- Jxdx = f 4dx + C 

y - 2 = 4x + C (3.7) 

x2 
y = - + 4x + C (3.8) 

where C is an arbitrary constant of integration. 

Unfortunately, application of the direct integration process fails to 
work in many cases. 
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3.2.2 Separation of Variables 

If direct integration fails for a first order differential equation, then 

the next step is to try to separate the variables. Direct integration may 

then be possible. When a differential equation can be put in the form 

f^xjdx + f2(y)dy = 0 (3.9) 

where one term contains function of x and dx only, and the other functions of 

y and dy only, the variables are said to be separated. A solution of Equation 

3.9 can then be obtained by direct integration 

J £x(x)dx + J f2(y)dy = C (3.10) 

where C is an arbitrary constant. Note, that for a differential equation of 

the first order there is one arbitrary constant. In general, the number of 

arbitrary constants is equal to the order of the differential equation. 

EXAMPLE 

dy _ x2 + 3x + 4 
dx     y + 6 

(y + 6)dy = (x2 + 3x + 4)dx 

J (y + 6)dy = J (x2 + 3x + 4)dx + C 

v2   -    x3   3x2 
*  +6y = |  +^|  +4x + C 

Not all first order equations can be separated in this fashion. 

3.2.3 Exact Differential Integration 

If direct integration, or direct integration after separation is not 

possible, then it still may be possible to obtain a solution if the 
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differential equation is an exact differential. Associated with each suitabl 

differentiate function of two variables f(x,y), there is an expression calle 

its differential, namely 

df = S* + #* " ° (3.11) 

that can be written as 

df = M(x,y)dx + N(x,y)dy = 0 

and is exact if and only if 

3M = 3N 
3y   3x 

If the differential equation is exact, then for all values of C 
x y 

(3.12) 

(3.13) 

M(x,y)dx + N(x,y)dy = C (3.14) 

is a solution of the equation, where a and b are dummy variables o 
integration. m 
EXAMPLE 

Show that the equation 

(2x + 3y -2)dx + (3x - 4y + l)dy = 0 (3.15) 

is exact and find a general solution. 

Applying the test in Equation 3.13 

m 3(2x + 3y - 2) _ . 
3y       3y 

3N _  3(3x - 4y + 1) _ , 
3x 3x    " * 
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Since the two partial derivatives are equal, the equation is exact, 

solution can be found by means of Equation 3.14. 

Its 

(2x + 3y - 2)dx + (3x - 4y + l)dy = C 

The integration is performed assuming y is a constant while integrating the 

first term. 

(x + 3xy - 2x) + (3xy - 2y2 + y) = C 

(x + 3xy - 2x) - (a2 + 3ay - 2a) + (3xy - 2y2 + y) - (3xb - 2b2 + b) = C 

x2 + 6xy - 2x -2y2 + y + 3ay + 3xb = C + a2 - 2a - 2b2 + b = Cx    (3.16) 

The same result can be obtained with less algebra and probably less 

chance of error by comparing Equation 3.15 with the differential form in 

Equation 3.11. 

i*< + f <* - ° 
(2x + 3y - 2)dx + (3x - 4y + l)dy 

Conparing these two equations, 

= 0 

and 

9x 

3y 

= 2x + 3y - 2 = 0 

= 3x - 4y + 1 = 0 
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(3.15) 
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Since Equation 3.15 is an exact differential, then Equations 3.17 and 3.18 ca^^ 

be obtained by taking partial derivatives of the same function f. To find ttJ^r 

unknown function f, first integrate Equations 3.17 and 3.18 assuming that y is 

constant when integrating with respect to x and that x is constant when 

integrating with respect to y. 

f - x2 + 3xy - 2x + f(y) + C = 0 (3.19) 

f = 3xy - 2y2 + y + f(x) + C - 0 (3.20) 

Note that if Equation 3.17 had been obtained from Equation 3.19, any term that 

was a function of y only, f(y), and any constant term, C, would have 

disappeared. Similarly, obtaining Equation 3.18 from Equation 3.20, the f(x) 

and C terms would have vanished. By a direct comparison of Equation 3.19 and 

3.20 the total function f can be determined. 

f = x2 + 3xy - 2x - 2y2 + y + C = 0 (3.21) 

Note that the unknown f(y) term in Equation 3.19 is (-2y2 + y) and the unknow^ k 

f(x) term in Equation 3.20 is x2 -2x. Redefining the constant of integration,^^ 

Equation 3.21 can be written as 

x2 + 3xy - 2x - 2y2 + y = q (3.16) 

and was obtained earlier by integrating using dummy variables of integration. 

3.2.4 Integrating Factor 

When none of the above procedures or techniques work, it may still be 

possible to integrate a differential equation using an integrating factor. 

When some unintegrable differential equation is multiplied by some algebraic 

factor which permits it to be integrated term by term, then the algebraic 

factor is called an integrating factor. Determining integrating factors for 

arbitrary differential equations is beyond the scope of this course; however, 

two integrating factors will be introduced in later sections of this chapter 
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when developing operator techniques and Laplace transforms. These two factors 

will be emx and e"st 

3.3 FIRST ORDER EQUATIONS 

The solution to a first order linear differential equation can be 

obtained by direct integration. Consider the form 

^ + R(x)y = 0 (3.22) 

where R(x) is a function of x only or a constant. To solve, separate variables 

& + R(x)dx = 0 (3.23) 

Integrating 

where 

Thus 

or 

I y^ = " \ R(x)dx + C' (3'24) 

C = In C 

In y = - [R(x)dx + lnC (3.25) 

- f R(x)dx 
y = Ce (3.26) 

If R(x) is a constant, R, then 

y = Ce~Rx (3.27) 

From this result, it can be concluded that a first order linear differential 

equation in the form of Equation 3.22 can be solved by simply expressing the 

solution in the form of Equation 3.27. 

EXAMPLE 

a£+ 2y = 0 (3.28) 
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then the solution can be written directly as 
--2x 

y - Ce (3.29) 
EXAMPLE 

a£ + x3y - ° (3.30) 

is in the form 

g£ + R(x)y = 0 (3.22) 

which has the solution 

- f R(x)dx 

y = Ce (3.26) 

Therefore, the solution to Equation 3.30 can be obtained directly 

-Jx3dx 
y = Ce 

- 1 x4 1 x y = Ce 

3.4 LINEAR DIFFERENTIAL EQUATIONS AND OPERATOR TECHNIQUES 

A form of differential equation that is of particular interest 

An jf + Vi ~n_f 
+ • • • + \  g + \Y   - f(x) (3.31) 

If the coefficient expression An, An_1, . . . , A,, are all functions of x 
only, then Equation 3.31 is called a linear differential equation. If the 
coefficient expressions An, . . . , A£) are all constants, then Equation 3.31 
is called a linear differential equation with constant coefficients. 
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EXAMPLE 

x2 & + 3 g + xy - sin x 
dx2    ^ 

is a linear differential equation. 

EXAMPLE 

dx2   ** 

is a linear differential equation with constant coefficients. Linear 

differential equations with constant coefficients occur frequently in the 

analysis of physical systems. Mathematicians and engineers have developed 

simple and effective techniques to solve this type of equation by using either 

"classical" or operational methods. When attempting to solve a linear 
differential equation of the form 

jn-l 

(3.32) 

it is helpful to first examine the equation 

.      dny _,_ .        dn_1y dv An    ~* + \-i — f +---+A1|+V   =    0 (3.33) 

Equation 3.33 is the same as Equation 3.32 with the right-hand side set equal 

to zero. Equation 3.32 is known as the general equation and Equation 3.33 as 

the complementary or homogeneous equation. Solutions of Equation 3.33 possess 
a useful property known as superposition, which may be briefly stated as 

follows: Suppose yx(x) and y2(x) are distinct solutions of Equation 3.33. 

Then any linear combination of yx(x) and y2(x) is also a solution of Equation 
3.33. A linear combination would be C1y1(x) + C y (x). 
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EXAMPLE 

fr-5^ ♦* - ° 
dx 

It can be verified that y1(x) = e3x is a solution, and that y2(x) = e2x is 

another solution which is distinct from y1(x). Using superposition, then, 

y(xj = c1e
3x + c2e

2x is also a solution. 

Equation 3.32 may be interpreted as representing a physical system where 

the left side of the equation describes the natural or designed state of the 

system, and where the right side of the equation represents the input or 

forcing function. 

The following line of reasoning is used to find a solution to Equation 

3.32: 

1. A general solution of Equation 3.32 must contain n arbitrary 
constants and must satisfy the equation. 

2. The following statements are justified by experience: 

a. It is reasonably straightforward to find a solution to the 
complementary Equation  3.33,  containing n arbitra 
constants.  Such a solution will be called the transien 
solution.  Physically, it represents the response present 
in the system regardless of input. 

b. There are varied techniques for finding the solution of a 
differential equation due to a forcing function. Such 
solutions do not, in general, contain arbitrary constants. 
This solution will be called the particular or steady 
state solution. 

3. If the transient solution which describes the response already 
existing in the system is added to the response due to the 
forcing function, it would appear that a solution so written 
would blend the two responses and describe the total response 
of the system represented by Equation 3.32. In fact, the 
definition of a general solution is satisfied under such an 
arrangement. This is simply an extension of the principle of 
superposition. The transient solution contains the correct 
number of arbitrary constants, and the particular solution 
guarantees that the combined solutions satisfy the general 
Equation 3.32. A general solution of Equation 3.32 is then 
given by 

IK 

m 
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# 
y = yt + yP 0.34) 

where yt is the transient solution and y is the particular 

solution. 

3.4.1 Transient Solution 

Equation 3.28 is a complementary or homogeneous first order linear 

differential equation with constant coefficients. A quick and simple method 

of solving this equation was found. The solution was always of exponential 

form; hopefully, solutions of higher order equations of the same family take 

the same form. 

a£+ 2y = 0 (3.28) 

Next, a second order differential equation with constant coefficients 

will be examined to determine if the candidate solution 

Y = emx (3.35) 

is a solution of the equation 

ay" + by' + cy = 0 (3.36) 

when the prime notation indicates derivatives with respect to x. That is, 

" =i-y" - T? 

Substituting 

or 

Since 

dx2 

y   =   emx 

am2emx + bmerax + cemx    =   C (3.37) 

(am2 + bm + c)emx    =    0. (3.38) 

emx     *    0 

am+bm+c   =    0 (3.39) 
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and, using the quadratic formula 

"i 5 - -b ± Vb2 - 4ac ._ ... 1,2 = —  2a  (3.40) 

Substituting these values into the assumed candidate solution, it is a solution 
when n^ and n^ are defined by Equation 3.40. 

n^x    itijX 

yt = qe   + C2e (3.41) 

Equation 3.41 represents a transient solution since there is no forcing 

function in Equation 3.36. When working numerical problems, it is not 

necessary to take the derivatives of emx. This will be true for any order 

differential equation with constant coefficients. From the foregoing, it is 

seen that the method for first order complementary equations has been extended 

to higher order complementary or homogeneous equations. Again an integration 

problem has been traded for an algebra problem (solving Equation 3.39 for m's). 

There are four possibilities for n^ and n^ , and each is discussed below. 

3.4.1.1 Case 1; Roots Real and Unequal. If n^ and n^ are real and unequal, 

the desired form of solution is just as given by Equation 3.41. 

EXAMPLE 

Given the homogeneous equation 

£Y + 4 ^ - 12y = 0, 
dx2    ax 

rewriting in operator form where 

ma = -3* 

and 

m~a = 
dx2 
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(m2 + 4m - 12)y = 0. 

Solving for the values of m, 

m2 + 4m - 12 = 0 
gives 

-4 + Vl6 + 48   -4 + 8 
m =  2  = —j- = -6f2 

and the required transient solution is 

yt = Cle-6x +c2e
2x. 

3.4.1.2. Case 2; Roots Real and Equal. If n^ and m, are real and equal, an 
alternate form of solution is required. 

EXAMPLE 

Given the homogeneous equation 

^-4g+4y - 0, (3.42) 
dx2    " 

rewriting in operator form 

Solving for the values of m, 

(m2  - 

: m, 

4m + 4)y    =    0. 

4 
2    " 

m   — 
4 +   Vl6 - 16 

2 2 

or m = 2. But this gives only one value of m, and two values of m are 
required to result in a solution of the form of Equation 3.41 which has two 
arbitrary constants. The operator expression 

can also be written 

m2 - 4m + 4 = 0 

(m - 2)2 =0 
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or 

(m - 2) (m - 2) = 0 

now a repeated polynomial factor resulting in two (repeated) roots 

m = 2,2. 

Writing the solution in the form of Equation 3.41 when the roots are repeated 

does not give a solution because the two arbitrary constants can be combined 

into a single arbitrary constant as shown below. 

yt = Cle
2x + c2e

2x = (c1+c2)e
2x = c3e

2x 

To solve this problem one of the arbitrary constants is multiplied by x. The 

solution now contains two arbitrary constants which cannot be combined, and it 

is easily verified that 

yt = cxe
2x  + c2xe

2x 

is a transient solution of Equation 3.42. 

3.4.1.3 Case 3; Roots Purely Imaginary. 

EXAMPLE 

Given the homogeneous equation 

*? ♦ * - o. 
dx2 

rewriting in operator form 

Solving, 

(m2 + l)y = 0. 

0 + VO - 4 
m =  »  = ±vCi 
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In most engineering work^-1 is given the symbol j. (In mathematical texts 

it is denoted by i.). Now, 

m = + j 

and the solution is written 

yt = Cle
jx + c2e"jx (3.43) 

This is a perfectly good solution from a mathematical standpoint, but Euler's 

identity can be used to put the solution in a more useable form. 

e3X = cos x + jsin x (3.44) 

This equation can be restated in many ways geometrically and analytically, and 

can be verified by adding the series expansion of cos x to the series 

expansion of j sin x. Now Equation 3.43 may be expressed 

yt = c1(cos x + jsin x) + c2[cos (-x) + jsin(-x)] 

yt = (cx + c2)cos x + j(ca - c2)sin x (3.45) 

or without loss of generality 

yt = c3 cos x + c4 sin x (3.46) 

An equivalent expression to Equation 3.46 is 

c, c. 
vt    =      Jc32  + c42     < —i    2

3        2    cos x + 4 sin x) (3.47) 
V Vc3    + c4 v/V  + c4

2 

If   the   arbitrary  constants   c3   and   c4   are   related  as   shown   in   Figure   3.2, 
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FIGURE 3.2. DEFINITION OF c, AND c, 
3 4 

then 

sf 
-   sin <f> 

and 
sf c 2 + c 2 

=      COS   <f> 

sj' C,'   +  C/      -A 

where A and <£ are also arbitrary constants, Equation 3.47 becomes 

yt    =   A (sin <f> cos x + cos <fr sin x) 

or using a common trigonometric identity 

yt = A sin(x + <f>) 

Note also that Equation 3.48 could be written in the equivalent form 

yt = A cos(x - 0) 

where 

6 = 90° - <f> 

(3.48) 

(3.49) 
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To summarize, if the roots of the operator polynomial are purely imaginary, 

they will be numerically equal but opposite in sign, and the solution will 

have the form of Equation 3.46, 3.48, or 3.49. 

EXAMPLE 

Given the homogeneous equation 

&   + 4y = 0 
dx2 

rewriting in operator form 

(m2 + 4)y = 0 

which gives the roots 

m = + 2j 

Alternate solutions can immediately be written as 

y  = c cos 2x + c sin 2x 
or 

yt = A sin(2x + <f>) 

where c3, c4, A, and <f> are arbitrary constants. 

3.4.1.4 Case 4: Roots Complex Conjugates. 

EXAMPLE 

Given the homogeneous equation 

£j + 2 Sf + 2y - 0 
dx2    dx   * 

rewriting in operator form 

(m2 + 2m + 2)y = 0 

Solving gives a complex pair of roots 

-2 ± V/4 - 8    , r-r m =     =-=  = -1+^-1 
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or 

m = -1 + j, -1 - j 

The solution can be written 

yt = c^«-1 + j)x + ^e'-1 " j)x 

Factoring out the exponential term gives 

yt - e-x(Cle
jx + c2e-jx) 

or,  using the  results  from Equations  3.46  and 3.48,   alternate  solutions  can 
immediately be written as 

yt    =   e~x(c3  cos x + c4  sin x) (3.50) 

or 

yt    =   e~x A sin(x + <f>) (3.51) 

3.4.2 Particular Solution 

The particular solution to a linear differential equation can be obtain» 

by the method of undetermined coefficients. This method consists of assuming 

a solution of the same general form as the input (forcing function), but with 

undetermined constant coefficients. Substitution of this assumed solution 

into the differential equation enables the coefficients to be evaluated. The 

method of undetermined coefficients applies when the forcing function or input 

is a polynomial, or of the form 

sin ax, cos ax, eax 

or combinations of sums and products of these terms. The general solution to 

the differential equation with constant coefficients is then given by Equation 

3.34, 

y = yt + yp (3.34) 
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which is the summation of the solution to the complementary equation 

(transient solution), plus the particular solution. 

Consider the equation 

j2 , 

a~f+   b   a£+cY   =    f(x> (3.52) 
dx ^ 

The particular solution which results from a given input, f(x), can be solved 

for using the method of undetermined coefficients.  The method is best 

illustrated by considering examples. 

3.4.2.1 Constant Forcing Functions. 

EXAMPLE 

7?+<£ +3y - 6 (3.53, 
dx 

The input is a constant (trivial polynomial), so a solution of form v  = K 
p 

is assumed. 

Then 

air - 3x - ° 
and 

d2yn p   =  **  =  o 
dx2 dx2 

Substituting into Equation 3.53, 

0 + 4(0) + 3K = 6 

yp = K = 2 
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Therefore, yp = 2 is a particular solution. The homogeneous equation can 

solved using operator form # 

dx 

(m2 + 4m + 3)y = 0 

or 

m = -1, -3 

and the transient solution can be written as 

yt = cxe~x + c2e"3x (3.55) 

The general solution of Equation 3.53 is 

c1e"x      +     c2e"3x      +     2 (3.56) 
_/ >—**~ 

transient particular 
solution (or steady state) 

solution 

3.4.2.2 Polynomial Forcing Function. 

EXAMPLE 

^ + 4 S + 3y - x* + 2x (3.57) 
dx 

The form of f(x) for Equation 3.57 is a polynomial of second degree, so a 

particular solution for yp of second degree is assumed: 

y„ = Ax2 + Bx + C 
■*p 

Then 

dyp 

cBT = 2Ax + B 
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and 

  = 2A 
dx2 

Substituting into Equation 3.57, 

(2A) + 4(2Ax + B)  + 3(Ax2  + Bx + C)    =    x2  + 2x 

or 

(3A)xz + (8A + 3B)x + (2A + 4B + 3C) = x2 + 2x 

Equating like powers of x,. 

Therefore, 

x2: 3A = 1 

A  » 1/3 

x: 8A + 3B = 2 

3B = 2 - 8/3 

B  = - 2/9 

x° :  2A + 4B + 3C = 0 

3C = 8/9 - 2/3 

C  = 2/27 

yp = 1/3 x2 - 2/9 x + 2/27 

The total general solution of Equation 3.57 is given by 

-3x 
y = cxe  + c2e"" + 1/3 x'  - 2/9 x + 2/27 (3.58) 

since the transient solution is Equation 3.55. As a general rule, if the 

forcing function is a polynomial of degree n, assume a polynomial solution of 

degree n. 
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3.4.2.3 EXPONENTIAL  FORCING FUNCTION. 

EXAMPLE 

£♦«£♦*-.» 

The forcing function is e " so assume a solution of the form 

Yp - Ae2x 

cS<Ae2X> = 2*" 

- ,(Ae") = 4Ae d  /,.2xi      ,._2x 

dx2 

Substituting into Equation 3.59, 

4Ae2x + 4(2Ae2x) + 3(Ae2x) = e2 

e2x(4A + 8A + 3A) = e2x 

(3.59) 

The coefficients on both sides of the equation must be the same. Therefore, 

4A+8A+3A = 1, or 15A = 1, and A = 1/15. The particular solution of 

Equation 3.59 then is yp = 1/15 e2x. The transient solution is still 

Equation 3.55. A final example will illustrate a pitfall sometimes 

encountered using this method. 
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3.4.2.4 Exponential Forcing Function (special case) 

EXAMPLE 

£y + 4 §| + 3y - .- (3.60) 
dx2   °* 

The forcing function is e~x, so assume a solution of the form y  = Ae_x. 

Then 

and 

^, (Ae~x) = Ae~x 

dx2 

Substituting into Equation 3.60, 

Ae~x + 4(-Ae"x) + 3(Ae"x )    =   e"x 

(A - 4A + 3A)e"x    =   e"x 

(0)e"x    =   e~x 

Obviously, this is an incorrect statement.  To locate the difficulty, the 

procedure to solve differential equations will be reviewed. 

To solve an equation of the form 

(m + a)(m + b)y = e~x 

solve the homogeneous equation to get 

(m + a)(m + b)y = 0 

m = -a, -b 

yt    =   Cle"ax + c2e"bx 
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If yp    =   Ae~ax  is assumed for a particular solution, then 

Y   =   yt + yp    =   c^8" + c2e
_bx + Ae_ax    =    (Cl + A)e_ax + c,e" 

- yt 

However, yt is the solution only when the right side of the equation is zero, 

and will not solve the equation when there is a forcing function of the form 

given. Assuming a particular solution of the form 

y  = Axe"ax 

will lead to a solution, then 

-bx 
y   =   yp + yt    =   cxe       + c2e "* + Axe""    =    (Cl  + Ax)e"ax + c2e"bx    *   yt 

Similarly, the equation 

(m + aj)(m - aj)y   =   sin ax 

has the transient solution 

yt    =   cx sin ax + c2  cos ax 

If yp    =   A sin ax + B cos ax is assumed for a particular solution, then 

y   =   yt + yp    =    (cx + A)sin ax + (c2 + b)cos ax 

y   =   c3  sin ax + c4  cos ax   =   y 

which, as in the previous example, does not provide a solution when there is a 

forcing function of the form given. But, assuming a solution of the form 

yp = Ax sin ax + Bx cos ax 

does lead to a solution 

y = (cx + Ax)sin ax + (c2 + Bx)cos ax t   y 
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Continuing with the solution of Equation 3.60, a valid solution can be found 

by assuming y  = Axe~x , then 

and 
^ (Axe"* ) = A(-xe"x + e"x ) 

j2 

—, (Axe~x) » A(xe~x - 2e"x) 
dx2 

Substituting into Equation 3.60, 

A(xe_x - 2e~x) + 4A(-xe"x + e"x) + 3(Axe"x) = -_x e 

(A - 4A + 3A)xe"x + (-2A + 4A)e~x = e"x 

(0)xe"x + 2Ae x = e~ 

and 

Thus, 

A = 1/2 

v  = (l/2)xe"x 
'p 

is a particular solution of Equation 3.60, and the general solution is given 

by 

y = ^e"" + c2e~3x + 1/2 xe"x 

The key to successful application of the method of undetermined coefficients 

is to assume the proper form for  a trial or candidate particular solution. 

Table 3.1 summarizes the results of this discussion. When f(x) in Table 3.1 

consists of a sum of several terms, the appropriate choice for y is the sum 
■*p 

of yp expressions corresponding to these terms individually. Whenever a term 

in any of the yp's listed in Table 3.1 duplicates a term already in the 

complementary function, all terms in that y must be multiplied by the lowest 

positive integral power of x sufficient to eliminate the duplication. 
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TABLE 3.1 
CANDIDATE PARTICULAR SOLUTIONS 

a —^ + b -p£ + cy = f (x) 
dx 

Forcing 
Function 

f(x) 

Assumed 
Solution 

yp 

Constant: 

Kl A 

Polynomial: 

K.x ,. n . ,. n—1 ,     , , 
AQX + A,x   + . . . + A _,x + A n 

Sine: *\ 

K, sin K~x 

A cos K^ + B sin K~x 

Cosine: 

K, cos K~x 
J 

Exponential: 

K_x 
Kle A e z 

3.4.3 Solving For Constants of Integration 

As discussed previously, the number of arbitrary constants in the 

solution of a linear differential equation is equal to the order of the 

equation. The constants of integration can be determined by initial or 

boundary conditions. That is, to solve for the constants the physical state 

(position, velocity, etc.) of the system must be known at some time. The 

number of initial or boundary conditions given must equal the number of 

constants to be solved for.  Many times these conditions are given at time 
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equal to zero, in which case they are called initial conditions. A system 

which has zero initial condition, i.e., initial position, velocity, and 

acceleration all equal to zero, is frequently called a quiescent system. 

The arbitrary constants of the solution must be evaluated from the total 

general solution, that is, the transient plus the steady state solution. The 

method of evaluating the constants of integration will be illustrated with an 

example. 

EXAMPLE 

• •  .» 
x + 4x + 13x = 3 (3.61) 

where the dot notation indicates derivatives with respect to time, that is, x 
**        2     2 

= dx/dt, x = d x/dt .  The initial conditions given are x(0)  =  5, and 

x(0) = 8. The transient solution is given by 

m2 + 4m + 13 = 0 

m = -2 + \J4  - 13 = -2 + j3 

xt = e"2t(A cos 3t + B sin 3t) 

Assume the particular solution of the form 

X
P " D 

.    dx 
x - ar - ° 

x  = 0 
p 

Substituting into Equation 3.61, D = 3/13 for the total general solution 

-2t 
x(t) = e  (A cos 3t + B sin 3t) + 3/13 
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To solve for A and B, the initial conditions specified above are used. 

x(0) = 5 = A + 3/13 

or 
A = 62/13 

Differentiating the total general solution, 

x(t) = e"2t[(3B cos 3t - 3A sin 3t) - 2e~2t(A cos 3t + B sin 3t)] 

Substituting the second initial condition 

x(0) = 8 = 3B - 2A 

B - 76 
B " 13 

Therefore, the complete solution to Equation 3.61 with the given initial 

conditions is 

x(t) = e"2t[(62/13) cos 3t + (76/13) sin 3t] + 3/13 

First and second order differential equations have been discussed in soin ^ 

detail. It is of great importance to note that many higher order systems^^ 

quite naturally decompose into first and second order systems. For example, 

the study of a third order equation (or system) may be conducted by examining 

a first and a second order system, a fourth order system analyzed by examining 

two second order systems, etc. All these cases are handled by solving the 

characteristic equation to get a transient solution and then obtaining the 

particular solution by any convenient method. 

A few remarks are appropriate regarding the second order linear 

differential equation with constant coefficients. Although the equation is 

interesting in its own right, it is of particular value because it is a 

mathematical model for several problems of physical interest. 
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,2 , 

a-^+bg^ + cy = f(x) mathematical model (3.62) 
dx 

d2x . „ dx 
M  +D^£ + KX = f(t) describes a mass spring        (3.63) 

(jt2 damper system 

L — +Rdt + C   E*fc*  describes a series LRC (3.64) 
jjt2 electrical circuit 

Equations 3.62, 3.63, and 3.64 are all the same mathematically, but are 

expressed in different notation. Different notations or symbols are employed 

to emphasize the physical parameters involved, or to force the solution to 

appear in a form that is easy to interpret. In fact, the similarity of these 
last two equations may suggest how one might design an electrical circuit to 
simulate the operation of a mechanical system. 

3.5 APPLICATIONS AND STANDARD FORMS 

Up to this point, differential equations in general and linear 
differential equations with constant coefficients have been considered. 

Methods for solving first and second order equations of the following type 
have been developed: 

dx 
a dt + bx = f(t) <3-65> 

a^ + bf| + cx = f(t) (3.66) 
dt    az 

These two equations are mathematical models or forms. These same forms may be 
used to describe diverse physical systems.  This section will concentrate on 
the transient response of the systems under investigation. 
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3.5.1 First Order Equation 

EXAMPLE 

4x + x = 3 (3.67) 

Physically, x can represent distance or displacement, where t is used to 

represent time. The transient solution can be found from the homogeneous 

equation. 

4x + x = 0 

(4m + l)x = 0 

4m + 1 = 0 

m = -1/4 

Thus 

xt = ce"t/4 

The particular solution is found by assuming 

Substitute 

or 

V = A 

dx 

ar- ° 

A = 3 

\    = 3 
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The total general solution is then 

ce~t/4 + 3 (3.68) 

The first term on the right of Equation 3.68 represents the transient 

response of the physical system described by Equation 3.67, and the second 

term represents the steady state response if the transient decays. A term 

useful in describing the physical effect of a negative exponential term is 

time constant which is denoted by x.  The time constant is defined by 

x = -I 
m 

Thus, Equation 3.68 could be rewritten as 

x   =   ce_t/T + 3 (3.6g) 

where T   =    4. 

Note the following points: 

1. The time constant is discussed only if m is negative. If ra is 
positive, the exponent of e is positive, and the transient 
solution will not decay. 

2. If m is negative, T is positive. 

3. x. is the negative reciprocal of m, so that small numerical 
values of m give large numerical values of t (and vice versa). 

4. The value of t is the time, in seconds, required for the 
displacement to decay to 1/e of its original displacement from 
equilibrium or steady value. To get a better understanding of 
this statement, examine Equation 3.69 

,» i *. 4.       u   X = ce"t/T+ 3 (3.69) and let t = x. Then 

x = ce_1 +3 = c - + 3 e (3.70) 

Thus, when t = x, the exponential portion of the solution has decayed to 1/e 

of its original displacement as shown in Figure 3.3. 
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3 + c 

*- t 

FIGURE 3.3. EXAMPLE OF FIRST ORDER EXPONENTIAL 
DECAY WITH AN ARBITRARY CONSTANT 

Other measures of time are sometimes used to describe the decay of the 

exponential of a solution. If Tx is used to denote the time it takes for the 

transient to decay to one-half its original amplitude, then 

Tx - 0.693 T (3.71) 

This relationship can be easily shown by investigating 

x   =   Cle-at + c2 (3.72) 

By definition, T 

Solving 

= 1/a. Tx is the value of t at which xt = 1/2 xt(0) 

xt = c2e 
-at 

-aT 
1/2 xt(0) = 1/2 cx    =   cte     1 

-aT 
e  x = 1/2 

-In 1/2 = aTx 
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= zl|_l^ = M?3= 0.693T 
ia       a 

The solution of Equation 3.67 can be completed by specifying a boundary 

condition and evaluating the arbitrary constant. Let x = 0 at t = 0. 

x = ce"t/4 + 3 

x(0) = 0 = c + 3 

c = -3 

The complete solution for this boundary condition is 

x = -3e_t/4 + 3 

as shown in Figure 3.4. 

i 

3 
i 

2- A 
1- 

>-x(t) = -3e-tf« 

 ».t 
Ti T 

FIGURE 3.4.  EXAMPLE OF FIRST ORDER EXPONENTIAL DECAY 
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3.5.2 Second Order Equations 

Consider an equation of the form of Equation 3.66 

a^-f + bg +cx = f(t) (3.66) 
dt 

As discussed earlier, the characteristic equation can be written in operator 
notation as 

am2+bm+c = 0 (3.39) 

where roots can be represented by 

-b + V b2 - 4ac 
^.2    -  5  (3'40> 

These quadratic roots determine the form of the transient solution. The 

physical implications of solutions for various values of m will now be 
discussed. 

3.5.2.1 Case 1; Roots Real and Unequal. When the roots are real and^ 

unequal, the transient solution has the form 

xt = c1e
mit + c2e

m2t (3.73) 

When n^ and n^ are both negative, the system decays and there will be a 

time constant associated with each exponential as shown in Figure 3.5. 
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ilß-   m 
wit xt=c1e   -i +c2e"2 

ni, < o ij 

*• t 

FIGURE 3.5.  SECOND ORDER TRANSIENT RESPONSE 
WITH REAL, UNEQUAL, NEGATIVE ROOTS 

When n^ or iflj (or both) is positive, the system will generally diverge as 

shown in Figures 3.6 and 3.7. 

x 

it 

xt = c1e
mit+ 0,8*2* 

X 

w _ - _ f^i?_i_ _ -, Slot Xt=C10''  + c2o   i2   A 

iS3t >° 

-»► t 

FIGURE 3.6.  SECOND ORDER TRANSIENT FIGURE 3.7. SECOND ORDER TRANSIENT 
RESPONSE WITH ONE RESPONSE WITH REAL, 
POSITIVE AND ONE NEGATIVE UNEQUAL, POSITIVE ROOTS 
REAL, UNEQUAL ROOTS 
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3.5.2.2  Case 2;  Roots Real and Equal.  When n^ 

solution has the form 

nij, the transie: 

# 

xt = Cje  + c2te (3.74) 

When m is negative, the system will usually decay as shown in Figure 3.8. 

If m is very small, the system may initially exhibit divergence. 

x 
it 

x, —c,e + c2te 

m <o 

«nt 

■+■ t 

FIGURE 3.8.  SECOND ORDER TRANSIENT RESPONSE 
WITH REAL, EQUAL, NEGATIVE ROOTS 

When m is positive, the system will diverge much the same way as shown in 

Figure 3.7. 

3.5.2.3  Case 3:  Roots Purely Imaginary.  When m 

solution has the form 

-  . + jk, the transient 

or 

or 

xt    =   cx  sin kt + c2  cos kt 

xt    =   A sin(kt + $) 

xt    =   A cos(kt + 9) 

(3.75) 

(3.76) 

(3.77) 
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The system executes oscillations of constant amplitude with a frequency k as 

shown in Figure 3.9. 

A.- 
x, = Asin(kt+0) 

-A-- 

*- t 

FIGURE 3.9.     SECOND ORDER TRANSIENT RESPONSE 
WITH IMAGINARY ROOTS 

3.5.2.4    Case 4:    Roots Complex    Conjugates.      When    the roots    are given by 

m   =   kx + jk2, the form of the transient solution is 

Xt 

or 

or 

:t    =   e i   (cx  cos k2t + c2  sin k2t) 

xt    =   Aekifc sin(k2t + <f>) 

xt    =   Aekifc cos(k2t + 0) 

(3.78) 

(3.79) 

(3.80] 

The system executes periodic oscillations contained in an envelope given 

by x - + ekifc. 
When kx is negative, the system decays or converges as shown in Figure 

3.10. When kx is positive, the system diverges as shown in Figure 3.11. 
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xt = Aekitsin(k2t + 0) 

-A- 

*«-*-t 

FIGURE 3.10. SECOND ORDER CONVERGENT 
TRANSIENT RESPONSE WITH 
COMPLEX CONJUGATE ROOTS 

FIGURE 3.11. SECOND ORDER DIVERGENT 
TRANSIENT RESPONSE WITH 
COMPLEX CONJUGATE ROOTS 

The discussion of transient solutions above reveals only part of the pictur^^ 

presented by Equation 3.66. The input or forcing function is still left M M 

consider, that is, f(t). In practice, a linear system that possesses a 

divergence (without input) may be changed to a clamped system by carefully 

selecting or controlling the input. Conversely, a nondivergent linear system 

with weak damping may be made divergent by certain types of inputs. Chapter 

13, Linear Control Theory, will examine these problems in detail. 

3.5.3 Second Order Linear Systems 

Consider the physical model shown in Figure 3.12. The system consists of 

an object suspended by a spring, with a spring constant of K. The mass 

represented by M may move vertically and is subject to gravity, input, and 

damping, with the total viscous damping constant equal to D. 
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///////////////////// 

DAMPER     I ~       I SPRING 

LB/FT 

DAMPER 
_D 
2 

LB/FT PER SEC 

LB 
MASS, M FT/SEC2 

f  DISPLACEMENT x, FT 

FORCE, LB 
f(t) 

FIGURE 3.12. SECOND ORDER MASS,  SPRING, 
DAMPER SYSTEM 

The equation for this system is given by 

Mx + Dx + Kx = f(t) 

The characteristic equation in operator notation is given by 

(3.81) 

Mm + Dm + K = 0 (3.82) 

The roots of this equation can be written 

V J_2MJ   M 

2M ±    V M V 3KM 

"^.2 "  2M 

»i.: 

(3.83) 

(3.84) 

3.41 



For simplicity, and for reasons that will be obvious later thre^^k 

(3.85) 

constants are defined 

L    =   D Q " 2^MK 

the term C is called the damping ratio, and is a value which indicates the 
clamping s1 trength in the system. 

(3.86) 

w is the 
which the 

undamped natural frequency of the system 
system would oscillate if there were no < 

. This is the 
damping present 

frequency at 

% s <vVi - c2 
(3.87) 

&>d is the damped frequency of the system.  It is the frequency at which the 

system oscillates when a damping ratio of £ is present. 

Subst :ituting the definitions of C and co into Equation 3.84 c jives 

»1,2 - - ccon + jw Vi- e (3.88)Mk 

With these roots, the transient solution becomes 

m t    m t 
xt - cie  + c2e 2 (3.89) 

which can be written as 

xt = 

—r<ji  t 

e  n  (c3 cos con VI - K   t + c4 sin CO Vl n -e t) (3.90) 

or 

-Ceo t        J 

xt = A e  n sin (con Vl - Z,2  t +  <f>) (3.91) 
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The solution will lie within an exponentially decreasing envelope which 

has a time constant of l/( C<on). This damped oscillation is shown in Figure 

3.13. From Equation 3.91 and Figure 3.14, note that the numerical value of 

damping ratio has a powerful effect on system response. 

Ae" f «»* 

x, = Ae fü,"tsin(üjnyi-f
2t + 0) 

-A ' 

*► t 

''^ Ae-f«-* 

FIGURE 3.13.     SECOND ORDER DAMPED OSCILLATIONS 

If Equation 3.81 is divided by M 

"     D •      K 
X+jjX+jjX f(t) 

M 

or, rewriting using wn and C defined by Equations 3.85 and 3.86 

x + 2Zfii x + co x = ^ n     n 
f(t) 
M 

(3.92) 

(3.93) 

Equation 3.93 is a form of Equation 3.81 that is useful in analyzing the 

behavior of any second order linear system.  In general, the magnitude and 

sign of damping ratio determine the response properties of the system.  There 

are five distinct cases which are given names descriptive of the response 

associated with each case. These are: 
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1. C = 0, undamped 

2. 0 < C > 1, underdamped 

3. C = 1, critically damped 

4. C > 1, overdamped 

5. C < 0, unstable. 

Each case will be examined in turn, making use of Equation 3.88, repeated 

below 

«1.2  "  "^n + K Vl " C* (3.88) 

3.5.3.1  Case 1;  C =  0, Undamped.  For this condition, the roots of the 

characteristic equation are 

»t,2 - ± H 

giving a transient solution of the form 

xt = cx cos wnt + c2 sin wnt (3.94) 

or 

xt =  A sin (w t + <|>) (3.95) 

showing the system to have the transient response of an undamped sinusoidal 

oscillation with frequency wn. Hence, the designation of w as the "undamped 

natural frequency." Figure 3.9 shows an undamped system. 

3.5.3.2 Case 2: 0 < C< l.Of Underdamped. For this case, m is given by 

Equation 3.88. 

»1,2 = " *><»« ±  JwN^TT"? (3.88) 
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The transient solution has the form 

-Cw t r— 
-   A e     n    sin(wn Yl - C t + ♦) (3.96) 

This solution shows that the system oscillates at the damped frequency, wd, 

and is bounded by an exponentially decreasing envelope with time constant 

V(Cwn). Figure 3.14 shows the effect of increasing the damping ratio from 
0.1 to 1.0. 
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FIGURE 3.14. SECOND ORDER SYSTEM RESPONSE 
FOR DAMPING RATIOS BETWEEN 
ZERO AND ONE 
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3.5.3.3 Case 3:  C = 1.0, Critically Damped. For this condition, the root^fc| 

of the characteristic equation are ^^^ 

»i.a = ~% (3.97) 

which gives a transient solution of the form 

-co t    -<»> t 
xt = cxe 

n + c2te 
n (3.98) 

This is called the critically damped case and generally will not overshoot. 

It should be noted, however, that large initial values of x can cause one 

overshoot. Figure 3.14 shows a response when t = 1.0. 

3.5.3.4 Case 4; C > 1.0, Overdamped. In this case, the characteristic roots 

are 

^,2 = -Cwn + w Vc
2 - 1 (3.99) 

which shows that both roots are real and negative. The system will have a 

transient which has an exponential decay without sinusoidal motion. The 

transient response is given by 

xt = Cle-
Wn^- VC2 -Dt +C2e-«(C+ V^^T)t        {3AQQ) 

This response can also be written as 

xt = Cje"*^! + c2e"
t/T2 (3.101) 

where xx and x2  are time constants for each exponential term. 

This solution is the sum of two decreasing exponentials, one with time 

constant -q and the other with time constant x2.    The smaller the value of t, 
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the quicker the transient decays.  Usually the larger the value of C, the 

larger TX is compared to T2 . Figure 3.5 shows an overdamped system. 

3.5.3.5 Case 5: - 1.0 < £ < 0, Unstable. For the first Case 5 example, the 
roots of the characteristic equation are 

*i,2 - " ^ ±  H Vl - t2 (3.102) 

These roots are the same as for the underdamped case, except that the 

exponential term in the transient solution shows an exponential increase with 
time. 

xt = e tent  (Ci cos ^Vi _ £  t + c2 sin «nVl - C
2 t)       (3.103) 

Whenever a term appearing in the transient solution grows with time (and 

especially an exponential growth), the system is generally unstable. This 

means that whenever the system is disturbed from equilibrium the disturbance 
will increase with time. Figure 3.11 shows an unstable system 

Case 5: Z, = - 1.0, Unstable. For this second Case 5 example, the 
roots of the characteristic equation are 

»L,2  = +wn (3.104) 

and 

to t 
xt = e n (cx + c2t) (3.105) 

This case diverges much the same way as shown in Figure 3.7. 

^,2    =   - Cw + « V C2 - 1 (3.99) 
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The response can be written as the sum of two exponential terms 

m t     m t 
xt = c^e   + tc2e 

2 

where the values of m can be determined from Equation 3.99. 

Case 5: Z, <  - 1.0, Unstable.  This third Case 5 example is similar to 
Case 4, except that the system diverges as shown in Figure 3.7. 

»i,2 = -*>%+%   V ? ~ 1 (3.99) 

The response can be written as the sum of two exponential terms 

m t    m t 
xt = cie * + c2e 2 

where the values of m can be determined from Equation 3.99. 

Five examples will illustrate some of these system response cases. 

EXAMPLE 

Given the homogeneous equation, 

x + 4x = 0 

from Equation 3.93, 

C = 0 

and 

(o  = 2.0 n 
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The system is undamped with a solution 

xt = A sin(2t + <f>) 

where A and <|> are constants of integration which could be determined by 
substituting boundary conditions into the total general solution. 

EXAMPLE 

Given the homogeneous equation 

• •  • 
x + x + x = 0 

from Equation 3.93, 

%    = 1.0 

and 

C = 0.5 

Also from Equation 3.87, the definition of dampe d frequency 

0.87 % = con v i - e = 

The system is underdamped with a solution 

xt = Ae"°-5t sin(0.87 t + ♦) 

EXAMPLE 

Given the homogeneous equation 

| + x + x = 0 

Multiply by four to get the equation in the form of Equation 3.93. 

Then 
x + 4x + 4x = 0 

3.49 



and 

w  = 2.0 n 

t - 1.0 

The system is critically damped and has a solution given by 

xt = c1e~2t  + c2te"
2t 

EXAMPLE 

Given the homogeneous equation 

x + 8x + 4x = 0 

from Equation 3.93, 

w  = 2.0 n 

and 

C = 2.0 

The system is overdamped and has a solution 

xt = cxe     + c2e 

EXAMPLE 

Given the homogeneous equation 

x" - 2x + 4x = 0 

from Equation 3.93, 

w  = 2.0 n 

and 

K   = -0.5 

From Equation 3.87, the definition of damped frequency 

%    - ^„ V 1 " C2 = 1.7 

The solution is unstable (negative damping) and has the form 

xt = Ae* sin (1.7 t + <\>) 
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In summary, the best damping ratio for a system is determined by the 

intended use of the system. If a fast response is desired and the size and 
number of overshoots is inconsequential, then a small value of damping ratio 

would be desired. If it is essential that the system not overshoot and 
response time is not too critical, a critically damped (or even an overdamped) 

system could be used. The value of damping ratio of 0.7 is often referred to 
as an optimum damping ratio since it gives a small overshoot and a relatively 

quick response. The optimum damping ratio will change as the requirements of 
the physical system change. 

3.6 ANALOGOUS SECOND ORDER LINEAR SYSTEMS 

3.6.1 Mechanical System 

The second order equation which has been examined in detail represents 
the mass-spring-damper system of Figure 3.12 and has a differential equation 
which was given by 

Mx + Dx + Kx = f(t) (3.81) 

Using the definitions 

K   =  %=-  (3.85) and a»  =\/| (3.86) 
2 VMK M 

Equation 3.81 was rewritten as 

x + 2C«o x + w 2 x = f4^ 
n     n M (3.93) 

3.6.2 Electrical System 

The second order equation can also be applied to the series LRC circuit 
shown in Figure 3.15. 
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+ R - 
br—W 

+ L - + c 
^m—11 

E(t) Ö 

where 

FIGURE 3.15. SERIES ELECTRICAL CIRCUIT 

L = inductance 

R = resistance 

C = capacitance 

q = charge 

i = current 

Assume q(0) = q(0) = 0, then Kirchhoff's voltage law gives 

or 

ZVabd  -  ° 

E(t) - VR - VL - Vc = 0 

E(t) - iR - L di Ht 
1 
C idt = 0 
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Since 

E(t) = Lq + Rq + 3 

The following parameters can now be defined 

(3.106) 

and 

wn    s     Vic (3.107) 

C      a    ==- (3.108) 
2 V VC 

2^wn    =   I (3.109) 

Using these parameters, Equation 3.106 can be written 

q + 20onq + w 2  q   =   2i*l (3.110) 

3.6.3 Se rvomechani sms 

For linear control systems work in Chapter 13, the applicable second 
order equation is 

I6o + feo + ^eo = **i (3.111) 

where 

I = inertia 

f = friction 

/y = gain 

Gi = input 

90 = output 
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Rearranging Equation 3.111 

%  + I % +   f eo    -   I ei (3-112) 

or 
eo   + 2^w„e0  + %2%     =    w26. (3.113) 0 ^ n   0 n      0 

where the following parameters are defined 

»» - f, w„ s  \/T (3.114) 

C =    / (3.115) 
2 \/7l 

Thus, in general, any second order differential equation can be written in the 

form 

*x'+ 20»>nx + wn
2x = fx(t) (3.116) 

where each term has the same qualitative significance, but different physica 

significance. 

3.7 LAPLACE TRANSFORMS 

A technique has been presented for solving linear differential equations 

with constant coefficients, with and without inputs or forcing functions. The 

method has limitations. It is suited for differential equations with inputs 

of only certain forms. Further, solution procedures require looking for 

special cases which require careful handling. However, these procedures have 

the remarkable property of changing or "transforming" a problem of integration 

into a problem in algebra, that is, solving a quadratic equation in the case 

of linear second order differential equations. This is accomplished by making 

an assumption involving the number e. 

3.54 



Given the second order homogeneous equation 

••  • 
ax + bx + ex = 0 (3.117) 

The following solution is assumed 

xt = emt (3.118) 

Substituting into Equation 3.117 gives 

am2emt + bine1"* + cemt = 0 (3.119) 

and, factoring the exponential term 

en,t(am2 + bm + c) - 0 (3.120) 

leading to the assertion that Equation 3.118 will produce a solution to 

Equation 3.117 if m is a root of the characteristic equation 

am2 + bm + c = 0 (3.121) 

Introducing operator notation, p = d/dt, the characteristic equation can be 

written by inspection. 

ap2 + bp + c =0 (3.122) 

Equation 3.122 can then be solved for p to give a solution of the form 

P,t pt 
xt    =   cxe       + c2e (3.123) 

Of course, the great shortcoming of this method is that it does not provide a 

solution to an equation of the form 

ax + bx + ex = f(t) (3.124,) 
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It works only for the homogeneous equation. Still, a solution to the equatioo^^ 

can be found by obtaining a particular solution and adding it to the transien^^ 

solution of the homogeneous equation.  The technique used to obtain the 

particular solution, the method of undetermined coefficients, also provides a 

solution by algebraic manipulation. 

However, there is a technique which exchanges (transforms) the whole 

differential equation, including the input and initial conditions into an 

algebra problem. Fortunately, the method applies to linear first and second 

order equations with constant coefficients. 

In Equation 3.124, x is a function of t. For emphasis, Equation 3.124 

can be rewritten 

ax(t) + bx(t) + cx(t) - f(t) (3.125) 

Multiplying each term of Equation 3.125 by the integrating factor emt gives 

ax"(t)en,t + bx(t)emt + cx(t)ent = f(t)erat       (3.126) 

It is now possible that Equation 3.126 can be integrated term by term on bottm M 

sides of the equation to produce an algebraic expression in m. The algebraic^^ 

expression can then be manipulated to eventually obtain the solution of 

Equation 3.125. 

The new integrating factor emt should be distinguished from the previous 

integrating factor used in developing the operator techniques for solving the 

homogeneous equation. In order to accomplish this, m will be replaced by -s. 

The reason for the minus sign will be apparent later. In order to integrate 

the terms in Equation 3.126, limits of integration are required. In most 

physical problems, events of interest take place subsequent to a given 

starting time which is called t = 0. To be sure to include the duration of 

all significant events, the composite of effects from time t = 0 to time t = «o 

will be included. Equation 3.126 now becomes 

ax(t) e st dt + b x(t) e"st dt + 

3.56 

c x(t) e"st dt 



f(t) e"st dt (3.127) 

Equation 3.127 is called the Laplace transform of Equation 3.125. 

problem now is to integrate the terms in the equation. 

The 

3.7.1 Finding the Laplace Transform of a Differential Equation 

The integrals of the terms of Equation 3.127 must now be found. 

Laplace transform is defined as 

The 

x(t) e"st dt H L{x(t)}  = X(s) (3.128) 

where the letter L is used to signify a Laplace transform. X(s) must, for the 

present, remain an unknown. (m was carried along as an unknown until the 

characteristic equation evolved, at which time m was solved for explicitly.) 

Since Equation 3.128 transforms x(t) into a function of the variable, s, 

then 

-St c x(t) e   dt = c -St x(t) e~st dt = cX(s) (3.129) 

and X(s) will be carried along until such time that it can be solved for. 

The transform for the second term, bx(t) is given by 

b x(t) e   dt = b x(t) e"st dt (3.130) 
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To solve Equation 3.130, a useful formula known as integration by part 

is used 

b b 

udv = uv 

a 

vdu (3.131) 

Applying this formula to Equation 3.130, let 

u = e 
-St 

and 

then 

and 

dv = x(t) dt 

du = -se~st dt 

v = x(t) 

Substituting these values into Equation 3.131 and integrating from t = 0 to 

t = » 

x(t)e~st dt =   x(t)e" •St St x(t)(-se"&t)dt 

=   x(t)e' •St 

OS 00 

+   S 

0 0 

x(t)e~st dt 
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= x(t)e" •st + SX(S) (3.132) 

Now 

x(t)e' 
•St ■St lim x(t)e~ot - x(0) 

t -> » 
(3.133) 

and assume that the term e"st "dominates" the term x(t) as t ■> «, The reason 

for using the minus sign in the exponent should now be apparent. Thus, 

lim x(t)e~st = 0, and Equation 3.131 becomes 

t -> » 

--st 
x(t)e~  dt = 0 - x(0) + sX(s) = sX(s) - x(0) (3.134) 

Equations 3.129 and 3.134 can now be abbreviated to signify Laplace 

transformations. 

L{x(t)} = X(s) 

L{cx(t)} = cX(s) 

L{x(t)} = sX(s) - x(0) 

L{bx(t)} = bfsx(s) - x(0)1 

Equation 3.138 can be extended to higher order derivatives, 

gives 

(3.135) 

(3.136) 

(3.137) 

(3.138) 

Such an extension 

L{ax(t)}   = a [s2X(s) - sx(0) - x(0)] 
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Returning to Equation 3.127, note that the Laplace transforms of all the te 

except the forcing function have been found.  To solve this transform, 

forcing function must be specified. A few typical forcing functions will be 

considered to illustrate the technique for finding Laplace transforms. 

rms^^ 

tlJ| 

EXAMPLE 

Then 

f(t) = A = constant 

or 

L{A} = Ae~st dt - - * 
s . 

e"st(-sdt) 
A -st 
— e 

L{A} (3.140) 

EXAMPLE 

f(t)  = t 

Then 

L{t} = te"st dt 

To integrate by parts, let 

u = t 

St 
dv = e~au dt 

Then 

du = dt 

1   -St v = -ie 
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Substituting into Equation 3.131 

EXAMPLE 

Then 

or 

te"st dt -te 
s 

-st 
e"st dt 

or 

0 - i- e~st 

s2 0+   I- 
s2 

L{t}    =   ±- (3.141) 

f(t)    =   e 2t 

L{e2t}    = 2t   -st     ,. e    e       at   = e(2"s)tdt   = s - 2 

L{e2t}    =      -1 

s - 2 (3.142) 

EXAMPLE 

Then 

f(t)    =    sin at 

L{sin at}    = sin at e~st  dt 
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Integrate by parts, letting 

u = sin at 

St 
dv = e"5t dt 

Then 

du = a (cos at)dt 

1   -St 
v = --e 

Substituting into Equation 3.131 

[sin t) e" 
-st 

st _ -(sin at)(e  ) 
♦ ! 

st 
(cos at) e  dt 

or 

(sin at) e st dt = 0 + f 
5 

(cos at) e"st dt (3.143) 

-st 
The expression (cos at) e~  can also be integrated by parts, letting 

u = cos at 

st dv = e"5t dt 

and 

du = -a (sin at)dt 

*-!•-* 
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Giving 

(cos at) e-st dt = -(cos at)(e st) 
s 

a 
s (sin at) e"st dt 

or 

(cos at) e"st dt - - 
s | L{sin at} (3.144) 

Substituting Equation 3.144 into Equation 3.143 

L{sin at} = 0 +| ( | -f Msinat}) 2- _ \ L{sin at} 
s   s 

which "obviously" yields 

L{sin at} = 
s2 +a

2 

Also note that Equation 3.143 may be written as 

(3.145) 

L{sin at} = f L{cos at} 

which yields 

L{cos at} = 
s2 +a2 

(3.146) 

The Laplace transforms of more complicated functions may be quite tedious 
to derive, but the procedure is similar to that above. Fortunately, it is not 
necessary to derive Laplace transforms each time they are needed. Extensive 
tables of transforms exist in most advanced mathematics and control system 
textbooks. All of the transforms needed for this course are listed in Table 
3.2 Page 3.73. 

The technique of using Laplace transforms to assist in the solution of a 
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differential equation is best described by an example. 

EXAMPLE 

Given the differential equation 

2t x + 4x + 4x = 4e (3.147) 

with initial conditions x(0) = 1, x(0) = -4. Taking the Laplace transform 
of the equation gives 

s2X(s) - sx(0) - x(0) + 4 tsX(s) - x(0)] + 4X(s) =   4 

s - 2 

or 

[s2 + 4s + 4] X(s) + [-s + 4 - 4] =   4 

s - 2 

Solving for X(s) 

X(s) =   S ~ 2s + 4 (3.148) 
(s - 2)(s + 2)2 

In order to continue with the solution, it is necessary to discus, 
partial fraction expansions. 

3.7.2 Partial Fractions 

The method of partial fractions enables the separation of a complicated 
rational proper fraction into a sum of simpler fractions. If the fraction is 

not proper (the degree of the numerator less than the degree of the 
denominator), it can be made proper by dividing the fraction and considering 
the remaining expression. Given a fraction of two polynomials in the variable 
s as shown in Equation 3.148 there occur several cases: 

3.7.2.1 Case 1: Distinct Linear Factors. To each linear factor such as 

(as + b), occurring once in the denominator, there corresponds a single 
partial fraction of the form, A/(as + b). 
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EXAMPLE 

7s - 4        AB      C 
s(s - l)(s + 2) = i+¥^i+i^-2 <3-149) 

where A, B, and C are constants to be determined. 

3.7.2.2 Case 2: Repeated Linear Factors. To each linear factor, (as + b), 

occurring n times in the denominator there corresponds a set of n partial 
fractions. 

EXAMPLE 

s2 - 9s + 17        A       B 

(s-2)2(s + l)    (s + 1)  (s - 2)  (s - 2)2 
(3.150) 

where A, B, and C are constants to be determined. 

3.7.2.3 Case 3; Distinct Quadratic Factors. To each irreducible quadratic 

factor, as + bs + c, occurring once in the denominator, there corresponds a 

single partial fraction of the form, (As + B)/(as2 + bs + c). 

EXAMPLE 

3s2 + 5s + 8      A   Bs + C 
 =  =   +-7  (3.151) 
(s + 2)(s2 +1)    s + 2  s2 + 1 

where A, B, and C are constants to be determined. 

3.7.2.4 Case 4: Repeated Quadratic Factors. To each irreducible quadratic 

factor, as + bs + c, occurring n times in the denominator, there corresponds 
a set of n partial fractions. 

EXAMPLE 

10 s2 + s + 36      A  , Bs + C . Ds + E 

(s - 4)(s2 + 4)2    s - 4  s2 + 4  (s2 + 4)2 

where A, B, C, D, and E are constants to be determined. 

+ -?  +—7 =r (3.152) 
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The "brute-force" technique for finding the constants will be illustrat 

by solving Equation 3.152. Start by finding the common denominator on tl 

right side of Equation 3.152 

10 S* + S + 36   m   A(s2 + 4)2 + (Bs + C)(s - 4)(s2 + 4) + (Ds + E)(s - 4) 

(s-4)(s2+4)2 (s-4)(s2+4)2 (3 153) 

Then the numerators are set equal to each other 

s - 4) + (Ds + E)(s - 4 
(3.154) 

10s2 + s + 36 = A(s2 + 4)2 + (Bs + C)(s2 + 4)(s - 4) + (Ds + E)(s - 4) 

Since Equation 3.154 must hold for all values of s, enough values of s are 

substituted into Equation 3.154 to find the five constants. 

1. Let s = 4, then Equation 3.154 becomes 

(10)(16) +4+36 = 400A 

and 

A = 1/2 

2. Let s = 2j, then Equation 3.154 becomes 

-40 + 2j + 36 = -4D + 2jE - 8jD - 4E 

- 4 + 2j = -4(D + E) + 2j (E -4D) 

The real and imaginary parts must be equal to their counterparts on the 

opposite side of the equal sign, thus 

(D + E) = 1 
and 

E - 4D = 1 
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or 

D = 0 

and 

E = 1 

3. Now let s = 0, then Equation 3.154 becomes 

36 = 16A - 16 (C) - 4E 

and from steps 1 and 2 

A = 1/2, E = 1 

hence 

36 = 8 - 16C - 4 

and 

C = -2 

4. Let s = 1, then Equation 3.154 becomes 

47 = 25 (1/2) + (B - 2) (-15) -3 

94 = 25 - 30B +60-6 

or 

B - - 1/2 

Now Equation 3.155 may be written by substituting the values of A, B, C, D, 
and E into Equation 3.152 

10 s2 + 2
S + 362 - 1/2 -±- -1/2 -±+-A  + —-1  (3.155) 

(s -4)(s2 + 4)2        s - 4      s2 + 4  (s2 + 4)2 
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Returning now to the example Laplace solution of the differential equation 

x + 4x + 4x = 4e2t (3.147) 
The Laplace transformed equation was 

X(s) = s ~ 2s + 4 (3.148) 
(s - 2)(s + 2)2 

which can now be expanded by partial fractions 

s2 - 2s + 4        A     B 
+ —— + =—- (3.156) 

(s - 2)(s + 2)2    s - 2  s + 2  (s + 2)2 

Taking the common denominator, and setting numerators equal 

s2 - 2s + 4 = A(s + 2)2 + B(s + 2)(s - 2) + C(s - 2)     (3.157) 

The "brute-force" technique could again be used to solve for the 

constants A, B, and C by substituting different values of s into Equation 

3.157. An alternate method exists for solving for the constants. Multiplying 
the right side of Equation 3.157 gives 

s2 - 2s + 4 = As2 + 4As + 4A + Bs2 - 4B + Cs - 2C 

S2 - 2s + 4 = (A + B)s2 + (4A + C)s + (4A - 4B - 2C) 

Now the coefficients of like powers of s on both sides of the equation must be 

equal (that is, the coefficient of s2 on the left side equals the coefficient 
of s on the right side, etc.). Equating gives 

s2 : 1 = A + B 

s1 : -2 = 4A + C 

S° : 4 = 4A - 4B - 2C 
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# 
Solving for the constants gives 

A = 1/4 

B = 3/4 

C = -3 

Substituting the constants into Equation 3.156 results in the expanded right 

side 

X(s) = 1/4 ^  +3/4 s\2    -3 s\2                                  (3.158) 

Another expansion method called the Heaviside Expansion Theorem can be used to 

solve for the constants in the numerator of distinct linear factors. This 

method of expansion is used extensively in Chapter 13, Linear Control Theory. 

If the denominator of an expansion term has a distinct linear factor, (s - a), 

the constant for that factor can be found by multiplying X(s) by (s - a) and 

evaluating the remainder of X(s) at s = a. 

Stated mathematically the Heaviside Expansion Theorem is 

x<s) - rh+ • • • 
A = (s - a) X(s) 

s  =  a 

EXAMPLE 

X(s)  =  7S ~ 4  = A + —*L_ +  C 

S(S - l)(s + 2)    s  s-1  s + 2 

A " SX(S) s = o " (s- l)(s + 2) s = 0 - T=TR2) = 2 
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B - (. - IM.) ^^    .   jT^*    _ _ i  -   j^    - 1 

C - (s + 2)X<s) s _ ^ - „^      . -^, . -3 

As another example, the constant A in the first term on the right side of 

Equation 3.156 can be evaluated using the Heaviside Expansion Theorem. 

S2-2s + 4   _   A  + _B_+_C__r (3>156) 

(s - 2)(s + 2)2    s - 2  s + 2  (s + 2)2 

A = (s - 2)X(s)      = s2 - 2s + 4 4  = 1 
s = 2     (s + 2)2   s = 2    ™       * 

which is the same result obtained earlier by equating like powers of s. 

3.7.3 Finding the Inverse Laplace Transform 

Now that methods to expand the right side of X(s) have been discussed in 

detail, all that remains is to transform the expanded terms back to the time 

domain. This is easily accomplished using any suitable transform table. 

Returning to the Laplace transformed and expanded equation in the example 

X(s) = 1/4 -^   + 3/4 -1-5 - 3 —i  , (3.158) 
S " Z s + Z (s+2)2 

Using Table 3.2, it can be easily verified that Equation 3.158 can be 
transformed to 

x(t) = 1/4 e2t + 3/4 e~2t - 3t e"2t (3.159) 
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In summary, the strength of the Laplace transform is that it converts 

linear differential equations with constant coefficients into algebraic 

equations in the s-domain. All that remains to do is to take the inverse 

transform of the explicit solutions to return to the time domain. Although 

the applications here at the School will consider time as the independent 

variable, a linear differential equation with any independent variable may be 

solved by Laplace transforms. 

3.7.4 Laplace Transform Properties 

There are several important properties of the Laplace transform which 

should be included in this discussion. 

In the general case 

JjfjcitO    =snx(s)_     [s-vx(0) + s,x-xdx(0) + ...+dj^i0!j    (3>160) 

{ dtn   ; dt dtn_1 

For quiescent systems 

L(^]- snX( s) (3.161) 

This result enables transfer functions to be written by inspection. 

EXAMPLE 

Given the differential equation 

*x* + 4x + 4x = 4e2t (3.162) 

with quiescent initial conditions, the Laplace transform can immediately be 
written by inspection as 

X(s)(s2 + 4s + 4) =  ^-i-j (3.163) 
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In most cases, reference to Table 3.2 will probably be needed to transform th, 

right side forcing function (input). 

Another significant transform is that of an indefinite integral. In the 

general case 

.JOT ...«<«*■} . if* J ""^ - °+ JJ"p-«,..(3. (3.164) 

Equation 3.164 allows the transformation of integro-differential equations 

such as those arising in electrical engineering. 

For the case where all integrals of f(t) evaluated at zero are zero 

(quiescent system) the transform becomes 

,5[JJ  ... x(t)dtn|  = ^± (3.165) 

EXAMPLE 

Given the differential equation 

«• 
x + 4x + 4x +  xdt = 4e J xdt = 4e2t (3.166) 
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TABLE 3.2. 
LAPLACE TRANSFORMS 

X(s) x(t) 

1. aX(s) ax(t) 

2. a[sX(s) - x(0)] ax(t) 

3. a[s2X(s) - sx(0) - x(0)] 

(which can be extended to 
any necessary order) 

ax(t) 

4. 1 
s 1 

5- ^ 
s 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

nl 
n+1 (n = 1, 2,  ...) 

s + a 

(s + a)' 

nl 

(s + a)n+1 
(n = 1, 2, ...) 

(s + a) (s + b) 

(s + a) (s + b) 

a + b 

a # b 

(s + a) (s + b) (s + c) 

n 

-at 

te -at 

tn e-at 

1 .  -at   -btu (e   - e   ) b - a 

1  (ae"at - be"bt) a - b 

(b-c)e at - (a-c)e"bt + (a-b)e~ct 

(a-b)(b-c)(a-c) 
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TABLE 3.2 
LAPLACE TRANSPORTS (continued) 

X(s) x(t) 

13. a sin at 
2   2 s + a 

14. 
s cos at 

2   2 s^ + a^ 

2 
15. 

a 1 - cos at 2   2 
s(sz + a^) 

3 
16. a at - sin at 2,2   2, s (s + a ) 

17. 2a3 sin at - at cos at 

( 
<s2 + a

2)2 

18. 
2as 

t sin at 
i  2 . 2,2 (s + a ) 

19. 
2as2 sin at + at cos at 

/ 2 _,_ 2,2 (s + a ) 

20. 
2   2 s - az t cos at / 2 _,_ 2,2 (s + a ) 

• 

21. (b2 - a2)s 
,2   2W 2  ,.2, (s + a ) (s + b ) 

(a2 * b2) cos at - cos bt 

22. b -at . , . e   sin bt 2   2 (s + aP + bz 

23. s + a -at •e   cos bt 2   2 
(s + a)z + bz 

i 
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with quiescent initial conditions, the Laplace transform can immediately be 

written by inspection as 

X(s) (s2 + 4s + 4) + %2l    = -i-, 
s      s *~ /» 

The right side transform is the same as Equation 3.163. Factoring results in 

X(s) (s2 + 4s + 4 + |)  = i4-2 (3.167) 

Multiplying Equation 3.167 by s gives 

X(s) (s3 + 4s2 + 4s + 1) =   4s 
s - 2 

which raises the order of the left side and acts to differentiate the right 

side (input). 

The usefulness of the Laplace transform technique will be demonstrated by 

solving several example problems. 

EXAMPLE 

Solve the given equation for x(t), 

x + 2x = 1 (3.168) 

when x(0) = 1. 

By Laplace transform of Equation 3.168 

L{x}  = sX(s) - x(0) 

L{2x} = 2X(s) 

Ml) = | 
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Thus 

(s + 2) X(s) = ~ + 1 
5 

X(S)  =   B±l  = 
A +  B s(s +2)    s  s + 2 

Solving, 
A = 1/2 

and 
B = 1 - 1/2 = 1/2 

x(s)    -   lg.  i 1/2_ X(s) r +FT^ 

Inverse Laplace transforming gives 

sX(s) - x(0) + 2X(s) =   1 

s2 + 1 

and 

3.76 

x(t) = 1/2 4 1/2 e"2t (3.169) 

EXAMPLE 

Given the differential equation 

x + 2x = sin t, x(0) = 5 (3.170) 

solve for x(t). 

Taking the Laplace transform of Equation 3.170 

X(s) =   1     ,  5 (3.171) 
(s2 + l)(s +2)  s + 2 



Expanding the first term on the right side of the equation gives 

As + B t      C (3.172) 

(s2 + l)(s +2)    s2 + 1  s + 2 

Taking the common denominator and equating numerators gives 

1 = (As + B)(s + 2) + C(s2 + 1) 

Substituting values of s leads to 

A = - 1/5 

B = 2/5 

C   =    1/5 

and substituting back into Equation 3.171 gives 

x(s)    =   ZVU + _V5_ + _V5_ + _5_ 
s2+l      s2+l      s + 2      s + 2 

Inverse Laplace transforming gives the solution 

X(t) = -1/5 cos t + 2/5 sin t + 5 1/5 e~2t      (3.173) 

EXAMPLE 

Given the differential equation 

x*+5x + 6x = 3e"3t, x(0) = x(0) = 1       (3.174) 

solve for x(t). 

Taking the Laplace transform of Equation 3.174 

s2X(s) - sx(0) - x(0) + 5sX(s) - 5x(0) + 6X(s) = —|-^     (3.175) 
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or 

s2 + 9s + 21 X(s) =  2 -r -* ^ "*  (3.176) 
(s 

Factoring the denominator, 

X(S) = (s + 3l(sV2)(s + 3) (3.177) 

(s + 3) (s2 + 5s + 6) 

s2 + 9s + 21 

X(s) =  S + 9s + 21  (3.178) 
(s + 3)2(s + 2) 

X(s) — + 5-— +—— (3.179) 
s + 3  (s + 3)   s + 2 

Finding the common denominator of Equation 3.179, and setting the resultant 
numerator equal to the numerator of Equation 3.178. 

s2 + 9s + 21 = A(s + 3)(s + 2) + B(s + 2) + C(s + 3)2 

which can be solved easily for 

A = -6 

B = -3 

C = 7 

Now X(s) is given by 

s + 3  (s + 3)   s + 2 

which can be inverse Laplace transformed to 
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x(t) = -6e"3t - 3te"3t + 7e~2t 

EXAMPLE 

Given the differential equation 

(3.180) 

••   • 
x + 2x + lOx = 3t + 6/10 (3.181) 

x(0) = 3 

x(0) = -27/10 

solve for x(t). 

Laplace transforming Equation 3.181 and solving for X(s) gives 

X(s) = 

where 

3s3 + 3.3s2 + 0.6s + 3 

s2 (s2 + 2s + 10) 

A  B_     Cs + D 

s  s2  s2 + 2s + 10 
(3.182) 

Thus, 

A =    0 

B =    0.3 

C =    3 

D =    3 

X(s) = °^ +   3S + 3 

s2   s2 + 2s + 10 
(3.183) 

To make the inverse Laplace transform easier, Equation 3.183 is rewritten as 

(s + 1) X(s) = — + 3 
(s + l)2 + 32 

(3.184) 
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which is readily inverse transformable to 

x(t) = 0.3t + 3e-tcos 3t (3.185) 

3.8 TRANSFER FUNCTIONS 

A transfer function is defined in Chapter 13, Linear Control Theory as, 

"The ratio of the output to the input expressed in operator or Laplace 

notation with zero initial conditions." The term "transfer function" can be 

thought of as what is done to the input to produce the output. A transfer 

function is essentially a mathematical model of a system and embodies all the 

physical characteristics of the system. A linear system can be completely 

described by its transfer function. Consider the following quiescent system. 

ax + bx + cx = f(t) (3.186) 

x(0) = x(0) =0 

Taking the Laplace transform of Equation 3.186 results in 

factoring gives 

as2X(s) + bsx(s) + cx(s) = F(s) (3.187) 

X(s)(as2 + bs + c) = F(s) (3.188) 

or 

X(s) =     1 

F(s)   as2 + bs + c 
(3.189) 

Since Equation 3.186 represents a system whose input is f(t) and whose output 

is x(t) the following transforms can be defined 

X(s) s output transform 

F(s) =    input transform 
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The transfer function can then be given the symbol TF and defined as 

TF = f[§j (3.190) 

In the example represented by Equation 3.189 

TF = — =  (3.191) 
as + bs + c 

Note that the denominator of the transfer function is algebraically the same 

as the characteristic equation appearing in the Equation 3.186. The 

characteristic equation completely defines the transient solution, and the 

total solution is only altered by the effect of the particular solution due to 

the input (or forcing function). Thus, from a physical standpoint, the 

transfer function completely characterizes a linear system. 

The transfer function has several properties that will be used in control 

system analysis. Suppose that two systems are characterized by the 

differential equations 

ax + bx + ex = f(t) (3.192) 

and 

dy* + ey + gy = x(t) (3.193) 

From the equations it can be seen that the first system has an input f(t), and 

an output x(t). The second system has an input x(t) and an output y(t). Note 

that the input to the second system is the output of the first system. Taking 

the Laplace transform of these two equations gives 

and 

(as2 + bs + c) X(s) = F(s) (3.194) 

(ds2 + es + g) Y(s) = X(s) (3.195) 
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Finding the transfer functions, 

X(s) 
TFX  = 

TF2  = 

F(S) 

= I(s) 
X(S) 

as + bs + c 

1 

ds2 + es + g 

(3.196 

(3.197) 

9 

Now, both of these systems can be represented schematically by the block 

diagrams shewn in Figure 3.16. 

F(s) TF, -►X(s) 

SYSTEM 1 

X(s) TF, -*-Y(s) 

SYSTEM 2 

FIGURE 3.16.  EXAMPLE BLOCK DIAGRAM NOTATION 

If it is desired to find the output y(t) of System 2 due to the input 

f(t) of System 1, it is not necessary to find x(t) since the two systems can 

be linked using transfer functions as shown in Figure 3.17. 

F(s) TF, 
X(s) 

TF, -►Y(s) 

F(s). TF, ■*-Y(8) 

TF3 = (TF1)(TF2) 

FIGURE 3.17.  COMBINING TRANSFER FUNCTIONS 
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The solution y(t) is then given by the inverse transform of Y(s), or 

Y(s) =  [TF3]  F(s) (3.198) 

or 

Y(S) =  [TFJ [TF2] F(s) (3.199) 

This method of solution can be logically extended to include any desired 

number of systems. 

3.9 SIMULTANEOUS LINEAR DIFFERENTIAL EQUATIONS 

In many physical problems the mathematical description of the system can 

most conveniently be written as simultaneous differential equations with 

constant coefficients. The basic procedure for solving a system of n ordinary 

differential equations in n dependent variables consists in obtaining a set of 

equations from which all but one of the dependent variables, say x, can be 

eliminated. The equation resulting from the elimination is then solved for 

the variable x. Each of the other dependent variables is then obtained in a 

similar manner. 

A very effective means of handling simultaneous linear differential 

equations is to take the Laplace transform of the set of equations and reduce 

the problem to a set of algebraic equations that can be solved explicitly for 

the dependent variable in s. This method is demonstrated below. 

Given the set of equations 

2 2 

3 ^-f + x + $-* +  3y = f(t) (3.200) 
dt2     dt2 

2d^x + x + di + 2y = g(fc) (3>201) 

dt2     dt2 

where x(0) = x(0) = y(0) = y(0) = 0, find x(t) and y(t). Taking the 
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Laplace transform of this system yields 

(3s2 + 1) X(s) + (s2 + 3) Y(s) = F(s) 

(2s2 + 1) X(s) + (s2 + 2) Y(s) = G(s) 

(3.202) 

(3.203) 

Cramer's rule will now be used to solve this set of equations. Cramer's rule 

can be stated in its simplest form as, given the equations 

P:(s) X(s) + P2(s) Y(s) = Fx(s) 

QX(S) X(S) + Q2(S) Y(S)  = F2(S) 

then, 

X(s) = 

for unknown X(s), and 

Y(s) = 

for the unknown Y(s). 

(3.204) 

(3.205) 

(3.206) 

(3.207) 
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The X(s) unknown in Equations 3.202 and 3.203 can be solved for in this 

fashion by applying Cramer's rule 

X(s) = 

In a similar manner, 

Y(s) = 

F(S) (s2 + 3) 

G(s) (s2 + 2) 

(3s2 + 1) (s2 + 3) 

(2s2 + 1) (s2 + 2) 

(3s2 + 1) F(s) 

(2s2 + 1) G(s) 

(3s2 + 1) (s2 + 3) 

(2s2 + 1) (s2 + 2) 

For the particular inputs f(t) = t and g(t) = 1, 

K (s2 + 3) 

x(s)    = 

1 
s <s"  + 2) -s3 + s2 - 3s + 2 

s2   (s4 - 1) (s* - 1) 

Expanded as a partial fraction 

X(S)     = A. + B +    CS + D    + _E_ + _J_ 
s2       s      (s2  + 1)       s - 1     (s + 1) 

-s3 + s2 - 3s + 2 

s2   (s4 - 1) 

Solving for A, B,  etc., 

X(s) =   z2 + 3  |  1/2 - s _    7/4    _    1/4 

(3.208) 

(3.209) 

(3.210) 

(3.211) 

s+1      s + 1      s-1 
(3.212) 
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which yields a solution 

x(t) = -2t + 3 - 7/4e_t - l/Ae*  + 1/2 sin t - cos t (3.213) 

A similar approach will obtain the solution for y(t). 

In the case of three simultaneous differential equations, the application 

of Laplace transforms and use of Cramer's rule will yield the solution. 

where 

P1(s)X(s) + P2(s)Y(s) + P3(s)Z(s) = Fx(s) 

Q^sjXfs) + Q2(s)Y(s) + Q3(s)Z(s) = F2(s) 

R^SWS) + R^sms) + RjUJZfs)  = F3(S) 

x(s) = 

Qi 

Y(s) and Z(s) will have similar forms. 

3.10 ROOT PLOTS 

^2 

*2 

(3.214) 

(3.215) 

(3.216) 

(3.217) 

Some insight into the response of a second order system can be gained by 

examining the roots of the differential equation describing the system on a 

root plot. A root plot is a plot of the roots of the characteristic equation 

in the complex plane. Root plots are used in Chapter 8, Dynamics, to describe 

aircraft longitudinal and lateral directional modes of motion. These plots 

are also used extensively in Chapter 13, Linear Control Theory, for linear 

control system analysis. 
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It was shown earlier that a second order linear system can be put into 

the following form: 

*•     *       i fft) 
x + 2Cw x + w2x = ii^i (3.93) ^ n     n       M 

whose roots can be written as 

Pi,2    " - Cw + jw ^1 - C2 (3.88) 

or 

Pi, 2      -  " ^Wn ± 3Wd <3'218> 

Figure 3.18 is a plot of the two roots of Equations 3.88 and 3.218 in the 

complex plane. 

Pi,2  =  " ^n ±   K V 1   ~   ? <3'88> 
^— real ^- imaginary 

where the first term is plotted on the real axis and the second term plotted 

on the imaginary (j) axis. 
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cos-1 £ 

IMAGINARY (j) 

„VW2-«€ 

REAL 

«„Vw7- ■ü), 

FIGURE 3.18. GENERAL ROOT PLOT IN 
THE COMPLEX PLANE 

From the right triangle relationship shown in Figure 3.18, it can be 

easily shown that the length of the line from the origin to either point px or 
p2 is equal to con. 

A2   + B2     =    C2 

2 ——        2 
Rco )    + (GO V 1 - C2)     =   C2 

C2w2 + w2   (1 - C2)    =   C2 

C2co 2 + <o 2 
^     n n - tv - e 

CO =    C2 

C     =     W 
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The five distinct damping cases previously discussed can be examined on 

root plots through the use of Equation 3.88. 

1.  C = 0, undamped (Figure 3.19) 

Pi, =    ~  S «    + j«L VI- (3.88) 

Pi, 2    -    ° + H 

IM 

Pi • An 

RE 

xt = Asin(Ant + 0) 

P2 • -nn NEUTRALLY STABLE 

FIGURE 3.19. NEUTRALLY STABLE UNDAMPED RESPONSE 

2.  0 < C < 1.0, Underdamped (Figure 3.20) 

Pi. + k^ - t« + jcon V 1 - C (3.88) 

Pi,2 = (-> ± 3 ( + ) 
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p,.'  
xt = Ae   fnntsin(a;dt+0) 

STABLE 

j 

'1,2 
• — 

FIGURE 3.20.  STABLE UNDERDAMPED RESPONSE 

3.  C = 1.0 Critically damped (Figure 3.21) 

Pi,2    =   * ^ ± 3" Vl - C2 

P.    ,     =    - Co 

IM 

RE 

-nn 

(3.88) 

xt = C^e-^nt + C2te--nn* 

STABLE 

FIGURE 3.21.  STABLE CRITICALLY DAMPED RESPONSE 
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4.  C > 1.0 Overdamped (Figure 3.22) 

?i,2   -   -^n± jo,nVl-C2 (3.88) 

Pi, 2      =     "   ^n   ±% ^   -   1 

£— real 

Pi,2       =      (-)'    <"> 

Pi P2 
•  •- 

IM 

RE 

x^C^P^ + C^^* 

STABLE 

FIGURE 3.22.     STABLE OVERDAMPED RESPONSE 

5.      C < 0 Unstable 

C   =   - 1.0 (Figure 3.23) 

Pi,2    =   ~ *>% + Jw Vl - C2 (3.88) 

Pi,2      -     Wn 
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IM 

nn       RE 

Pl,2 

xt = c, e nnt + c2te An* 

UNSTABLE 

FIGURE 3.23. UNSTABLE RESPONSE 

- 1.0 < £ < 0 (Figure 3.24) 

Pi,2      -     "   *>%   ±i<»Jl-   ? (3.88) 

Pi,2    "    (+) + 3  < + )• 

Pi,2    "    (+) ± 3  ( + > 

xt = Ae fnnt sin (uA + 0) 

UNSTABLE 

FIGURE 3.24 UNSTABLE RESPONSE 
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C < — 1.0 Both roots positive (Figure 3.25) 

P1(2       =      ~   *>%   ±   H>/l   "   ^ (3.88) 

p1>2    =    ( + ),   (+) 

IM 

RE 

P2      Pi 

xt = C,e^ + C2e
p2X 

UNSTABLE 

FIGURE 3.25. UNSTABLE RESPONSE 

In summary, a second order system with both roots located to the left of 

the imaginary axis is stable. If both roots are on the imaginary axis the 

system is neutrally stable, and if one or more roots are located to the right 

of the imaginary axis the system is unstable. These conditions are shown in 

Figure 3.26. 
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STABLE 
X 

STABLE 

IMAGINARY 

UNSTABLE 

REAL 

UNSTABLE 

NEUTRALLY 
STABLE 

FIGURE 3.26. ROOT LOCUS STABILITY 

Root plots can be used for analysis of the aircraft modes of motion. For 

example, the longitudinal static statiblity of an aircraft is greatly 

influenced by center of gravity (eg) position. Figure 3.27 shows how the 

roots of the characteristic equation describing one of the longitudinal motion 

modes change position as the eg is moved aft. This plot is called a root 

locus plot. 

3.94 



B 

35 30 

f 
• 15% MAC 

eg LOCATION 

IMAGINARY 

• 20 

i25 
A*28 

r 
REAL 

• 28   30 

• 25 

• 20 

• 15% MAC 

35 

FIGURE 3.27 EFFECT OF CG SHIFT ON LONGITUDINAL STATIC 
STABILITY OF A TYPICAL AIRCRAFT 

Note that as the eg is moved aft of its initial location at ,15% MAC, damping 

of this mode of motion (short period) increases while the frequency decreases. 

Zero frequency is reached between a eg location of 28% and 30% MAC. The root 

locus then splits into a pair of real roots, branches AB and AC of the locus. 

These branches represent damped aperiodic (nonoscillatory) motion. The short 

period mode of motion goes unstable at a eg location of 35% MAC. The location 

of the eg where this instability occurs (35% MAC in this example) is known as 

the maneuver point and it is discussed in detail in Chapter 6, Maneuvering 

Flight. 
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PROBLEMS 

Solve for y. 

3#1, 5-JY = x4 + 4x + sin 6x 

3.2. —y . e~x + sin wx 
dx2 

3.3 £*- x5 

dx3 

3.4. y gf 3x2 = 0 

3.5. (x -l)2 ydx + x2 (y - l)dy = 0 

Just find a solution. Solving for y is tough. 

Test for exactness and solve if exact. 

3.6. (y2 - x) dx + (x2 - y) dy = 0 

3.7. (2x3 + 3y) dx + (3x + y - 1) dy = 0 

3.8. (2xy4  ey + 2xy3 + y) dx +    (x2y4ey - x2y2 - 3x) dy   =   0 

3.9. Multiply   Problem 3.8 by 1/y4    and solve for y.      Note this assumes that 

y t 0. 

Solve for yt 

3.10. 5y' + 6y   =    0 
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3.11. y'" - 5y" - 24y'  = 0 

3.12. y" + 12y' + 36y = 0 

3.13. y" + 4y' + 13y = 0 

Solve for yt and yp in Problems 3.14 - 3.17, then solve for the general 

solution. 

3.14. V + 5y + 6y = 3e"3t y(0) = 1, y(0) = 6 

3.15. y+4y+4y   =   cost y(0)    =   || , y(0)    =   - ^ 

3.16. 2x*+4x + 20x = 6t + | ,     x(0) = 3 , x(0) =    - JQ 

3.17. 3x + 2x = -4e"2t , x(3) = -0.14 

3.18. Find con, &>d, Z„   and describe system damping (i.e., underdamped, 

overdamped, etc.) vrtiere applicable. 

••     * _3t 
y + 5y + 6y = 3e 

••   • 
3.19. y + 4y + 4y = cos t 

3.20. 2#x + 4x + 20x = 6t + | 

3.21. 3x + 2x = - 4e"2t 
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In problems 3.22 - 3.24 find x(s), do not find the inverse transform. 

••  • 
3.22. 3x + x + 6x = sin 6t,       x(0) = x(0) = 0 

3.23. x - 2x + 5x = e_t sin 3t,    x(0) = -1, x(0) = 9 

3.24. 4x + 3x - x = t3 - t sin 2t,  x(0) = 3, x(0) = -2 

In Problems 3.25 - 3.27, expand X(s) by partial fractions and find the 

inverse transforms. 

3.25. X(s) = —5SJt 29s + 36 

(s + 2) (s2 + 4s + 3) 

2s2 + 6s + 5 

(s2 + 3s + 2) (s + 1) 

2s4 + 7s3 + 27s2 + 51s + 27 

3.26. X(s) = 

3.27. X(s) = 
(s3 + 9s) (s2 + 3s + 3) 

Solve the following problems by Laplace transform techniques. 

3.28. x + 2x = sin t,        x(0) = 5 

3.29. x + 5x + 6x = 3e~3t,    x(0) = x(0) = 1 

Solve using Laplace Transforms 

3.30. x + 3x - y = 1 x(0) = y(0) = 0 

x + 8x + y = 2 

3.98 



3.31. Read the question and circle the correct answer, true (T) or false (F): 

T F The particular solution to a second order differential equation 
contains two arbitrary constants that are solved for using 
initial conditions and the transient solution too. 

T F Solutions to linear differential equations are generally 
nonlinear functions. 

T  F  Differential equation solutions are free of derivatives. 

T F Direct integration will give solutions to some differential 
equations without the necessity of arbitrary constants. 

T F in general, the number of arbitrary constants in the solution 
of a differential equation is equal to the order of the 
differential equation. 

T F There is no known way to determine if a differential equation 
is exact. 

T F The solution to a first order linear differential equation with 
constant coefficients is always of exponential form. 

T  F  The Laplace variable s can be real, imaginary, or complex. 

T F Inverse Laplace transforms are used to return from the s to the 
time domain. 

T   F   Quiescent systems have zero initial conditions. 

T   F   First order equation roots cannot be plotted on root plots. 

T F A transfer function can be defined as input transform divided 
by output transform. 

T F The characteristic equation completely describes the transient 
solution. 

T   F   The method of undetermined coefficients is used to solve for 
the particular solution. 
»•   • 

T   F   x + 4x + 13x = 3, is a second degree equation. 
••   • 

T   F   x + 4x + 13x = 3, is a second order equation. 
• 

T   F   4x + 13x = 3, is a first order equation. 

T   F   It is impossible to have a linear, second degree equation. 

T   F   13x =3, is a linear equation. 
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T  F   13x = 3, is a differential equation. 

T  F  Damping  ratio  and natural  frequency have  no  physical 
significance. 

T   F   The time constant and time to half amplitude for a first order 
system are equal. 

T  F  The Laplace transform converts a differential equation from the 
time domain to the s domain. 

T  F  The transient response is dependent on the input. 

T  F  Laplace transforms are easy to derive. 

T  F   In general, it is easier to check a candidate solution to see 
if it is a solution than to determine the candidate solution. 

T  F   Superposition can be used for adding linear differential 
equation solutions. 

T  F  The method of partial fractions is used to solve for the 
particular solution of a differential equation. 

T  F  The number "e" is a variable. 

T  F  The Laplace transform of the characteristic equation appears i 
the denominator of the transfer function. 

• 
T  F   There is a general technique which can be used to solve any 

linear differential equation. 

T  F  Cramer's rule is in centimeters. 

T  F  Cramer's rule is an outdated method of solving simultaneous 
equations. 

T  F  The transfer function completely characterizes a linear system. 

T   F   The Heaviside Expansion theorem is often cited by weight 
watchers. 

T   F   A root plot is a short hand method of presenting transient time 
response. 

T   F   The settling time is a measure of damping ratio of a system 
without regard for the damped frequency. 

T   F   Ify =  f(x), then y is the dependent and x the independent 
variable. 
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3.32.  The following terms are important.  Define and provide symbols for 

those you are not sure of. 

Differential Equation 

Dependent Variable 

Independent Variable 

Ordinary Differential Equation 

Partial Differential Equation 

Exact Differential Equation 

Linear Differential Equation 

Degree of a Differential Equation 

Order of a Differential Equation 

General solution 

Transient solution 

Particular solution 

Steady-state solution 

Forcing function 

Input to a system (related to the differential equation) 

Output of a system (related to the differential equation) 

Time Constant 

Damping ratio 

Damped natural frequency 

Natural Frequency 

Undamped response 

Underdamped response 

Overdamped response 

Unstable system response 
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Critical Damping 

Linear system 

Laplace Transform 

Inverse Laplace Transform 

Unit Step 

Unit Impulse 

Ramp function 

Transfer function 

Pole 

Zero 

Root Plot 

Root Locus 

Rise time 

Settling Time 

Peak Overshoot 

Time to peak overshoot 

Steady-state error 

3.33. Solve the following problems. Sketch root locus plots, and find C, wn» 

toj, and x where appropriate. 

d!y - v2 A. — *    = x + 4x 
dx2 

B. dy =   ~2x^K  
(x2 + cos y) 

C. * + t>. - 0 
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D.    £*-5£ + 6x   =    0 
dt2 * 

E.    £x_4dx + 4x    = 

dt2 * 

d2x F.    —x   + 4x   =   0 
dt2 

G.    £-x + 7 ^ + 22x    =    0 
dt2 * 

H.    Given:    yt    =   2 sin 3x + 2 cos 3x 

Find A and <J> in the expression 

yt    =   A sin(3x + <J>) 

The following problems are the same as D thru G with forcing functions. 

T      d x      c dx    ,   , n 

d^2  "     ^ 

j. £*   _ 4 *   + 4x   =   e2t 

dt2 * 

d2x K.    —      + 4x    =    sin 3t 
dt2 

L.    d2x ^ n dx    ,  __ . 
- 2 

+ 7 at -22x = fc 
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The following problems are the same as D thru G with forcing functionl 

and initial conditions: 

M. 

N. 

dlx 
dt2 

dt2 

rdX  ,  , 
5dt+6X = 9 

- 4 dx at + 4x = e 2t 

d2x 0. — + 4x = sin 3t 
dt2 

P. *L* + 7 £ + 22x = t 
dt2    ^ 

x(0) 
x(0) = 

3/2 
2 

x(0) 
x(0) = 

2 
4 

x(0) = 0 

x(0) =S - 3/10 

x(0) 
x(0) 

= 0 
1/22 

3.34. Solve the following problems using Laplace techniques: 

A.    £x-5£    +6x    -    9 
dt2 * 

x(0)    =    3/2 
x(0)    =    2 

B.    l?-4$    + 4x    =    e2t 

dt2 M 
x(0)    =    2 
x(0)    =    4 

3.35. Given the set of equations 

3| + a? - t 

dx . d 
23t + I 

where x(0) = y(0) = 0, find y(t) using Laplace transform methods. 
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ANSWERS 

x    .   -2       cos 6x 3.1.    y    -    £    + 2x    - w» ™ + c 

3.2.    y   =    e-x - £*f* + q, + c2 
CO 

x8 Ci x* 
3-3'    y   =    336 +   -2~ + C2X + C3 

3.4.    y2     =    -2x3  + C 

3.5.    yet    =   Cx2  exp(^p  ) 

3.6.    Not exact. 

3.7.    f    =    *■    + 3xy + ¥   -y + C 

3.8.    Not exact. 

3.9.    f   =   xV + £   +   —    =   C 
y       y3 

3.10.    yt    =   Ce~6/5t 

3.11.    yt    =   Cj  + C2e"3t + C3e
8t 

3.12.    yt    =   qe"" + C2te"6t 
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2t 3.13.    yt    =   C e"" cos (3t + <|>) 

3.14.    y   =   -lle"3t + 12e"2t - 3te~3t 

-. * r. -2t       58 ,   - 21 3 . 4       . 3.15.    y   =   e       - 4c te       + ^- cos t + ^£- sin t 15" 15" 

3.16. 

3.17. 

3.18. 

y 

y 

(0 

-t 

=   -e 

3e      cos 3t + 3/10 t 

2/3t Ä-2t + e 

= VT 
c  =  1.02 

3.19.    w n 

c 

WL. 

3.20.    w 

C   = 

wJ 

3.21.    T   = 

- 2 

= 1 

= 0 

=     VlÖ 

0.316 

=    3.0 

3/2 

3.22.    x(s)    = Bd    + 36 

3s2 + s + 6 

3.23.    x(s)    = (s + l)2    +9    - s + U 

s2  - 2s + 5 
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3.24.    x(s 

3.25. 

3.26. 

3.27. 

3.28. 

3.29. 

3.30. 

y(t 

y(t 

y(t 

x(t 

x(t 

x(t 

y(t 

6 

7" 
4s 

(s2 + 4)2 
+ 12s + 1 

4sz + 3s - 1 

=   2e~2t - 3e"3t + Se'1 

=   e~2t + e_t + te_t 

= 1 + 2/3 sin 3t + e~3/2t cos Vi/4 t + | e~3/2t sin \/3/4 t 

■2t =   26/5 e       - 1/5 cos t + 2/5 sin t 

=   _6e-3t - 3te'3t + 7e"2t 

=   1/4 (1 - e"2t   (cos 2t - sin 2t)) 

-   1/4 (-1 e_2t   (cos 2t + 3 sin 2t)) 

3.33.    A.    y   =   j 2 + 2/3 x    + Cx + C, 

B.    x y + sin y   =    C 

C.    x   =   Ce V/4 

D.     x(t) =   Cle
2t + C2e

3t 

E.    co     = n 

c  = 

2 

0 

-1 
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F. C    =    0 
w     =    2 n 

wd    =    2 

G. w     =   4.69 
ZI 

(ü.    =    3.12 a 
C   -   0.746 

H.    A =    yJT 
4> =    n/4 

I.    x =   Cx e2t + C2 eJt + 3/2 

J.    x =   Cxe
2t + C2te2t + 1/2 t2e2t 

K.    x =   q cos 2t + C2  sin 2t - 1/5 sin 3t 

3t 

L.    x   =   e ■v2t (Ci cos Vp t + C2 sini|91) +1/221 _ _7^ 

M.    x   =   - 2e2t + 2e3t + 3/2 

N.    x    -    2e2t  + 1/2 t2  e2t 

0.    x   =   3/20 sin 2t - 1/5 sin 3t 

T, -7/2t P.    x   =   e {~m cos—2 t + .016 sin ^39 1 t)+4it- 7 
484 

3.34.    A.    x(t)    =   I - 2e2t  + 2e3t 

B.    x(t)    =   2e"2t + 1/2 tV 

3.35.    y(t)    -    3t - t2 

x(t)    =   1/2 t2 - t 

3.108 


